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THE VALIDITY OF THE RAYLEiGH EXPANSION

M. Neviere and M. Cadilhac
*

SUIMMARY. A new method to investigate the

diffraction of an electromagnetic wave by a

grating of infinite conductivity is given.

This method., based on a convenient conformal

mapping, leads to a general discussion of

the validity of the Rayleigh expansion.

i. Formulation of the Problem /235 *

We will refer the space to a rectangular triad (Oxyz). We

will consider a periodic cylindrical surface having a period of

21i, whose generators are parallel to the Oz axis. The directrix

located in the plane xOy has the equation y = g(x) (Figure 1).

The part of the space defined by y g(x) is filled with a metal

having infinite conductivity. A plane electromagnetic wave having

a wave vector k and linearly polarized impinges on the grating

described in this way at an incidence angle of 8. We will attempt

to determine the distribution of the energy diffracted among the

different orders.

Because of the polarization under consideration [4], we will

consider the unknown of the problem to be the component along the

Oz axis of the electrical field vector ("case E //"), or the

component along the Oz axis of the magnetic excitation vector

("case H /"). This unknown f(x, y) is therefore a solution of

problem (I) according to [1]:
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(bA k2)f(xy y 0, for y> (x); (1)

-f~x+2r, ) =fiXy) exp i4 2-r n 01 (2)

("p seudo periodicity" property):

(f = f )incident verifies an

Figure 1. Schematic represen- outgoing wave condition" for
tation of a grating.

Y- ; (3)

f = 0 in the case E for y g() (4)
lor y - g(x);

Df/3n = 0 in the case H #.

3f/Dn designates the normal derivative of the function f(x, y)

and k is the modulus of the wave vector of the incoming wave. I is

the root of (-1) having the argument +r.

2. Formulation of the Problem (I)

Condition (4) often makes it difficult to solve this problem.

It would therefore be expedient to find a point transformation

which would simplify its formulation. Such a transformation must

maintain conditions (2) and (3) and must not overly complicate (1).

It is possible to verify that the family of conformal trans-

formations defined by:

z * e z (5)
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where r +iyand X + iY,

- satisfies Conditions (2) and (3)

- replaces Equation (1) by

with K2('.Vy) = k Z i/dzl2

-- according to the theorems for conformal transformations,

it is possible to obtain the transformation of the directrix of

a grating in the OX axis by a suitable choice of the an

The new coefficient K2 (x,Y) is then periodic and has the

period 2i. In addition, it exponentially strives to k
2 when

Y + . If we assume that for Y > A, where A is a number to be

determined using some tests, K2 (,y)=k 2 , we are led to a previously

studied [2] limit problem.

Two types of problems can be considered:

(a) the grating profile is given, and the transformation

coefficients an are determined which transform this profile into

the OX axis.

(b) the collection of coefficients is given and the corres-

ponding grating is studied.

In the two cases, we reach the problem discussed in [2].
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3. Relationship Between the Rayleigh Expansion

and the Conformal Transformation

The fundamental hypothesis of Rayleigh consists of assuming

that above the grating the total field can be expanded into plane

waves having the form

where

X ,= f2+k sin O)2/2, i k2- sin o;

= l (+kin 0) 2 -k2]i/2, if 2 (n ksinO 0O.

If we refer to Millar [3], the solutions of the Helmholtz

and Laplace equations will satisfy the same conditions at the

limit and will have the same singularities. We can then study

the corresponding "static" case.

The. "static" Rayleigh expansion is then written as:

Let us consider the function Z(z) = .X(x, y) + iY(x, y). Y

satisfies AY.=.O, as an imaginary part of an analytic function;

Y(x, g(x)) = 0 in terms of its construction.

Therefore Y(x, y) is the solution of the electrostatic

problem corresponding to (I) and can be identified.with the

static E(x, y).



From this we can derive the fact that the validity of the

static Rayleigh expansion is proven if we can show that:

+ f

It is easy to show that this' implies that:

.Z-z+ 2iD cxplinz'

which shows that the function Z(z) is holomorphic Vy :-x).

We can therefore see that the investigation of the validity

of the Rayleigh expansion leads to investigation of the singu-

larities of Z(z).

We must now determine the possible singularities of Z(z).,

which is the inverse function of an analytic function in a

finite domain. In effect, the transformation (5) means that

there is a two-way correspondence between a point :(x,y $) and

0) . The possible singularities are therefore necessarily

located in the domain limited by the curves having the equation

y = 0 and y = g(x).

Let us limit ourselves to the case where the number of

coefficients an entering in (5) is finite. The function z(Z) is

therefore a whole function. Under these conditions, the only

singularities possible are branching points which are obtained

when dz/dZ = 0.
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4. Applications

4.1 Case of Cycloidal Gratings

Let us recall the fact that it is this type of profile which

can be used for the mathematical representation of holographic

gratings [4]:

In (5), we will set a 0o vaol
Z + a, exp(1Z .

aZ Z+ ia o piZ] We will set cQa where a is

real.

By setting Y = 0, we obtain the corresponding profile: /237

x= X- asinx; y acos.X,

which are parametric equations of a shortened cycloid (Figure 2)..

Let us determine the region of validity of the Rayleigh

expansion.

dz/dZ . i - a exp jZ] = 0',

if Z Zo ioga 2p.

=,z =i(i+loga)+2pr, where p is a whole number.

The field E(x, y) can therefore be represented in terms of

plane waves only if y >Im zo). Consequently; if imrno)>.-a, the

Rayleigh expansion can only be used to translate the boundary

conditions at the grating surface.
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Figure 2. Region in which the Figure 3. Localization of the

Rayleigh expansion is valid singularities in the case a = i.

for a cycloidal grating.

The case is realistic if a> ao 0.278, which is a solution of

the transcendental equation

A+a + o10ga 0 (.

The Rayleigh expansion cannot be valid for translating the

boundary conditions over the entire grating surface except for

sufficiently flat profiles, such that a will be smaller than ao

4.2 Special Case a =1 (Figure 3)

zo j(1+l oga) i 2P@

The singularities are located at the grating points, and

the Rayleigh expansion is never valid.

4.3 Case of Small Scale Gratings

This type of profile requires an infinite number of

coefficients na It is difficult to determine the transcendental

equation corresponding to (7). We can also reason differently:
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Figure 4. Correspondence Figure 5. Correspondence
between the g = x + iy and between the Z = X + iY and
the w plane. the W plane.

Let us set: w=cP[ i; (8)

W P exp iZ7 . (9)

The relationships (8) and (9) respectively provide for the

correspondences shown in Figures 4 and 5.

It is easy to verify that the transformation defined by (5)

is equivalent to:

W 'cn1n, (10)
n =1

and that the Rayleigh expansion is valid if the function W(w) is

holomorphic in the cross-hatched region of the plane 0, that is,

if the expansion (10) converges. This convergence occurs within /238

a circle having its center at 0 (image at the point at infinity

of the plane xOy), having a radius RM equal to the distance from

Q to the closest singularity of w(W). We can therefore see that

the Rayleigh expansion is only valid for y < yM. It is therefore

not valid for a small scale grating,* and more generally, it is

not valid for a grating the profile of.which has angular points

directed towards y > 0.

*This result is only valid for exceptional conditions,
such as the grating of Marechei and. Stroke [5].
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5. Conclusion

The family of conformal transformations proposed therefore

represents a simple and permanent method of numerically finding

the region of validity of the Rayleigh expansion for gratings

having a wide variety of profiles.

Other applications, for example sinusoidal profiles, are

presently being studied.
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